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1. The 1D Hermite element is defined by (K, P, N), where:

1. K is the interval [a,b] (for simplicity in this question we will take a =0, b = 1),
2. P is the space of polynomials of degree 3 or less,

3. Ni(v) =wv(a), No(v) =v(b), N3(v) = S—Z(a), Ny(v) = S—Z(b).

(a) Show that N determines P. (5 marks)
(b)  Show that the polynomial ¢(z) = 32% — 223 is one of the nodal basis functions for P.
(5 marks)

(c) Which of the following problems is this element suitable for building a Galerkin discretisation
for, and why?

—u" =0, w(0)=0,d(1)=1, (1)
u—u"+u" =sin(x), u(0)=1u'(0)=u(l)=1u(1)=0, (2)

U — u// + u//// . u////// — eXp([E), u(o) — ul(o) — u//(o) — ()7
u(l) =u'(1) =u"(1) =0 (3)
(5 marks)

(d) Propose a finite element that is suitable for the same problems that you indicated in Part (c),
but with P altered to be the space of polynomials of degree 4 or less. Explain briefly why
your proposed finite element is unisolvent. (5 marks)

(Total: 20 marks)
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2.  Consider the following linear variational problem: find v € H' such that

a(u,v) = F(v), Yvé& H',
where a(u,v) is a bilinear functional with continuity constant M and coercivity constant -, and
F(v) is a bounded linear functional.
For a finite element space V}, C H'(2) defined on a domain 2, the Galerkin approximation of the
linear variational problem is as follows: find u; € V}, such that

a(up,v) = F(v), Yv € V.
(a) Show that

a(u —up,v) =0, YveV,.

(5 marks)

(b)  Show that
YMu = unllm < Mllu =l

for any v € V},, where || f|| g1 is the H! norm on Q. (5 marks)
(c) Consider the following bilinear form on H*(€2),

a(u,v) :/qu—l—VwVv—i—vﬁ-Vud:c,

where [ is a given vector field with |5| < By, V- 5 =0 and 3 -n = 0 on the boundary 0
of €2, where n is the unit outward pointing normal to 0f2.

(i)  Find a finite upper bound for the continuity constant of a. (3 marks)
(i)  Show that

1
a(u,u) = /Qu2 + | Vul* + §V - (Bu?)d .
(3 marks)

(iii) Hence, find a finite upper bound for the coercivity constant of a. (4 marks)

(Total: 20 marks)
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3. (a) For f € HY(Q), where Q is some convex polygonal domain, the H' projection of f into a
degree k Lagrange finite element space V is the function u € V' such that

/uv+Vu-Vvdx:/vf+Vv~Vfdx, Yo e V.
0 0
Show that u exists and is unique from this definition, with

[l < ([ f] -

(5 marks)

(b)  Show that the H' projection is mean-preserving, i.e.

/Qudx:/Qfdx.

(c) Show that the H' projection u into V' of f is the minimiser over v € V' of the functional

(5 marks)

Il = [0 =PIV - NI

(5 marks)

(d) Hence, show that
Hu — fHHl(Q) < Chk’f‘Hk-H(Q),

where h is the maximum triangle diameter in the triangulation used to construct V. Here,

you may quote results from the course without proof.
(5 marks)

(Total: 20 marks)
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4. Consider the wave equation,

0%u 9
solved for a time-dependent function u(x, t) on a closed simply connected domain €2, with boundary
conditions % = 0 on the boundary 0f).

(a) Given a C° finite element space V},, formulate a finite element discretisation of the wave
equation (4) with time dependent solution u(x,t) € V},. You may assume that the solution
is twice differentiable in time, and should use a variational formulation involving integration
over the spatial domain €2 only. (5 marks)

(b)  Show that the discretisation can be written in the form

d2

where u is the vector of basis coefficients for u € V},.
(5 marks)

(c) Show that the discretisation is equivalent to the following formulation: simultaneously find
u €V, and v € V}, such that

<¢7 ut> - <¢7 U> - O) VQS € Vha (5)
<¢7 Ut) + <V2/}, VU’) = 07 vw € Vh7 (6)
where (-, -) is the usual L? inner product on €. (5 marks)

(d) Using Equations (5-6), show that the solution conserves energy,
1 2 2
E:f/v + |Vu|*dz,
2 Ja
ie. E=0. (5 marks)

(Total: 20 marks)
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(iif)

The variational formulation of the Stokes equation seeks (u,p) € (V,Q), where V = (H")3 is the
subspace of (H')3 vanishing on the boundary, and Q = L? is the subspace of L? that integrates

to zero, such that

((w,p). (v,0) = [ f-oda, Vo0 € (H'(@Q) x L)

where

c((u,p), (v Q))—a(u v) +0(v,p) + b(u, q),
a(u,v —2,u/ x, b(u,q):/QqV-udx,

i > 0 is the viscosity (a real number), and €(v) is a mapping from vector fields to tensors given by

() = ; (Vo+ (Vo))

Show that the bilinear form ¢ is not coercive.

We define the operator B : V — )’ by

Bulp] = b(v,p), Vp€Q,
and the transpose operator B* : () — V' by

B*plv] = b(v,p), Vv eV,
where V'’ and @)’ are the dual spaces to V' and () respectively.

Show that the inf-sup condition,

b(v, q)

inf sup ——7%— >8>0,
0#£4€Q ey ||[v]lv[|gll
is equivalent to
|1 B*qllv
in
0£e€Q  [|qllq

> f.

Hence, show that the inf-sup condition is equivalent to

1B*qllv: = Bllalle, Vg € Q-

Hence, show that the inf-sup condition implies injectivity of B*.
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(5 marks)

(5 marks)

(5 marks)

(5 marks)

(Total: 20 marks)
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