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1. The 1D Hermite element is defined by (K,P ,N ), where:

1. K is the interval [a, b] (for simplicity in this question we will take a = 0, b = 1),
2. P is the space of polynomials of degree 3 or less,
3. N1(v) = v(a), N2(v) = v(b), N3(v) = d v

d x
(a), N4(v) = d v

d x
(b).

(a) Show that N determines P . (5 marks)
(b) Show that the polynomial ϕ(x) = 3x2 − 2x3 is one of the nodal basis functions for P .

(5 marks)
(c) Which of the following problems is this element suitable for building a Galerkin discretisation

for, and why?

−u′′ = 0, u(0) = 0, u′(1) = 1, (1)
u− u′′ + u′′′′ = sin(x), u(0) = u′(0) = u(1) = u′(1) = 0, (2)

u− u′′ + u′′′′ − u′′′′′′ = exp(x), u(0) = u′(0) = u′′(0) = 0,
u(1) = u′(1) = u′′(1) = 0. (3)

(5 marks)
(d) Propose a finite element that is suitable for the same problems that you indicated in Part (c),

but with P altered to be the space of polynomials of degree 4 or less. Explain briefly why
your proposed finite element is unisolvent. (5 marks)

(Total: 20 marks)
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2. Consider the following linear variational problem: find u ∈ H1 such that

a(u, v) = F (v), ∀v ∈ H1,

where a(u, v) is a bilinear functional with continuity constant M and coercivity constant γ, and
F (v) is a bounded linear functional.
For a finite element space Vh ⊂ H1(Ω) defined on a domain Ω, the Galerkin approximation of the
linear variational problem is as follows: find uh ∈ Vh such that

a(uh, v) = F (v), ∀v ∈ Vh.

(a) Show that
a(u− uh, v) = 0, ∀v ∈ Vh.

(5 marks)
(b) Show that

γ∥u− uh∥H1 ≤ M∥u− v∥H1 ,

for any v ∈ Vh, where ∥f∥H1 is the H1 norm on Ω. (5 marks)
(c) Consider the following bilinear form on H1(Ω),

a(u, v) =
∫

Ω
uv + ∇u · ∇v + vβ · ∇u dx,

where β is a given vector field with |β| ≤ β0, ∇ · β = 0 and β · n = 0 on the boundary ∂Ω
of Ω, where n is the unit outward pointing normal to ∂Ω.

(i) Find a finite upper bound for the continuity constant of a. (3 marks)
(ii) Show that

a(u, u) =
∫

Ω
u2 + |∇u|2 + 1

2∇ · (βu2) dx.

(3 marks)
(iii) Hence, find a finite upper bound for the coercivity constant of a. (4 marks)

(Total: 20 marks)
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3. (a) For f ∈ H1(Ω), where Ω is some convex polygonal domain, the H1 projection of f into a
degree k Lagrange finite element space V is the function u ∈ V such that∫

Ω
uv + ∇u · ∇v dx =

∫
Ω
vf + ∇v · ∇f dx, ∀v ∈ V.

Show that u exists and is unique from this definition, with

∥u∥H1 ≤ ∥f∥H1 .

(5 marks)
(b) Show that the H1 projection is mean-preserving, i.e.∫

Ω
u dx =

∫
Ω
f dx.

(5 marks)
(c) Show that the H1 projection u into V of f is the minimiser over v ∈ V of the functional

J [v] =
∫

Ω
(v − f)2 + ∥∇(v − f)∥2 dx.

(5 marks)
(d) Hence, show that

∥u− f∥H1(Ω) < Chk|f |Hk+1(Ω),

where h is the maximum triangle diameter in the triangulation used to construct V . Here,
you may quote results from the course without proof.

(5 marks)

(Total: 20 marks)
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4. Consider the wave equation,
∂2u

∂t2
− ∇2u = 0, (4)

solved for a time-dependent function u(x, t) on a closed simply connected domain Ω, with boundary
conditions ∂u

∂n
= 0 on the boundary ∂Ω.

(a) Given a C0 finite element space Vh, formulate a finite element discretisation of the wave
equation (4) with time dependent solution u(x, t) ∈ Vh. You may assume that the solution
is twice differentiable in time, and should use a variational formulation involving integration
over the spatial domain Ω only. (5 marks)

(b) Show that the discretisation can be written in the form

M
d2

d t2 u +Ku = 0,

where u is the vector of basis coefficients for u ∈ Vh.
(5 marks)

(c) Show that the discretisation is equivalent to the following formulation: simultaneously find
u ∈ Vh and v ∈ Vh such that

⟨ϕ, ut⟩ − ⟨ϕ, v⟩ = 0, ∀ϕ ∈ Vh, (5)
⟨ψ, vt⟩ + ⟨∇ψ,∇u⟩ = 0, ∀ψ ∈ Vh, (6)

where ⟨·, ·⟩ is the usual L2 inner product on Ω. (5 marks)
(d) Using Equations (5-6), show that the solution conserves energy,

E = 1
2

∫
Ω
v2 + |∇u|2 dx,

i.e. Ė = 0. (5 marks)

(Total: 20 marks)
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5. The variational formulation of the Stokes equation seeks (u, p) ∈ (V,Q), where V = (H̊1)3 is the
subspace of (H1)3 vanishing on the boundary, and Q = L̊2 is the subspace of L2 that integrates
to zero, such that

c((u, p), (v, q)) =
∫

Ω
f · v dx, ∀(v, q) ∈ (H̊1(Ω))3 × L̊2(Ω), (7)

where

c((u, p), (v, q)) = a(u, v) + b(v, p) + b(u, q), (8)

a(u, v) = 2µ
∫

Ω
ϵ(u) : ϵ(v) dx, b(u, q) =

∫
Ω
q∇ · u dx, (9)

µ > 0 is the viscosity (a real number), and ϵ(v) is a mapping from vector fields to tensors given by

ϵ(v) = 1
2

(
∇v + (∇v)T

)
. (10)

(a) Show that the bilinear form c is not coercive. (5 marks)

(b) We define the operator B : V → Q′ by

Bv[p] = b(v, p), ∀p ∈ Q,

and the transpose operator B∗ : Q → V ′ by

B∗p[v] = b(v, p), ∀v ∈ V,

where V ′ and Q′ are the dual spaces to V and Q respectively.

(i) Show that the inf-sup condition,

inf
0̸=q∈Q

sup
̸=v∈V

b(v, q)
∥v∥V ∥q∥Q

≥ β > 0,

is equivalent to
inf

0̸=q∈Q

∥B∗q∥V ′

∥q∥Q

≥ β.

(5 marks)

(ii) Hence, show that the inf-sup condition is equivalent to

∥B∗q∥V ′ ≥ β∥q∥Q, ∀q ∈ Q.

(5 marks)

(iii) Hence, show that the inf-sup condition implies injectivity of B∗. (5 marks)

(Total: 20 marks)
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