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seen/sim.seen ⇓1. (a) We need to show that for v ∈ P then if Ni(v) = 0, i = 1, 2, 3, 4, then v ≡ 0. At

x = 0 there is a double root because v(0) = v′(0) = 0, and similarly at x = 1.

Therefore v is a degree 3 polynomial with 4 roots, so v ≡ 0 by the fundamental

theorem of algebra. 5, A

(b) N1(ϕ) = ϕ(0) = 3 × 02 − 2 × 03 = 0. N2(ϕ) = ϕ′(0) = 6 × 0 − 6 × 02 = 0.

N3(ϕ) = ϕ(1) = 3 × 12 − 2 × 13 = 1. N4(ϕ) = 6 × 1 − 6 × 12 = 0. Hence ϕ

vanishes for all nodal variables, except for N3, so it is a nodal basis function. 5, A

(c) The finite element can be used to build a C1 finite element space, because we

have the function value and its derivative at each interval vertex, so we can enforce

continuity of the function and its derivative by sharing those nodal variables between

cells.

Equation (1) is a second order problem, which requires an H1 formulation, so the

finite element space must be C0. Our finite element space is C1 ⊂ C0, so this is

suitable.

Equation (2) is a fourth order problem, which requires an H2 formulation, so the

finite element space must be C1. Our finite element space is C1, so this is suitable.

Equation (3) is a sixth order problem, which requies an H3 formulation, so the

finite element space must be C2. Our finite element space cannot be C2, because

the second derivative at a vertex cannot be computed from nodal variables stored

at that vertex, so this is not suitable. 5, A

(d) We need to add an extra nodal variable to those above. For example, N5(v) =

v((a + b)/2). This is unisolvent because if N1[v] = 0 for all i = 1, 2, 3, 4, 5, v is

a degree 4 polynomial with five roots, hence is the zero polynomial. This is still

suitable for problems (1) and (2) because the function value and derivative at each

vertex can be obtained from nodal variables associated with that vertex. 5, A
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seen ⇓2. (a) Since Vh ⊂ H1, we can use v ∈ Vh in both the original variational problem and the

Galerkin approximation,

a(u, v) = F [v], a(uh, v) = F [v].

Subtraction and linearity in the first argument gives

0 = a(u, v)− a(uh, v) = a(u− uh, v),

as required. 5, A

(b) Continuity and coercivity mean that

a(u, v) ≤M∥u∥H1∥v∥H1 , γ∥u∥2H1 ≤ a(u, u),

respectively. Then, for arbitrary v ∈ Vh, we have

(coercivity) γ∥u− uh∥2H1 ≤ a(u− uh, u− uh),

(linearity) ≤ a(u− uh, u− v) + a(u− uh, v − uh)︸ ︷︷ ︸
=0 by part (a)

,

(continuity) ≤M∥u− uh∥H1∥u− v∥H1 .

Either ∥u− uh∥H1 = 0, in which case the required result holds as required, or we

can divide by ∥u− uh∥H1 to obtain the required result. 5, B

sim. seen ⇓
(c) (i)

a(u, v) = ⟨u, v⟩H1 +

∫
Ω
vβ · ∇udx,

≤ ∥u∥H1∥v∥H1 + ∥v∥L2∥β · ∇u∥H1 ,

≤ ∥u∥H1∥v∥H1 + ∥v∥L2β0∥∇u∥L2 ,

≤ (1 + β0)∥u∥H1∥v∥H1
.

The continuity constant is ≤ (1 + β0). 3, B

unseen ⇓
(ii) Substituting v = u gives

a(u, u) =

∫
Ω
u2 + |∇u|2 + uβ · ∇u dx.

We have u∇u = 1
2∇u

2. If ∇ · β = 0 then β · ∇ψ = ∇ · (βψ) for any scalar

field ψ and the result follows by picking ψ = u2/2.
3, B

(iii)

a(u, u) =

∫
Ω
u2 + |∇u|2 + 1

2
∇ · (βu2) dx,

=

∫
Ω
u2 + |∇u|2 dx+

1

2

∫
∂Ω
β · n︸︷︷︸
=0

1

2
u2 dS,

= ∥u∥2H1 ,

so the coercivity constant is 1. 4, D
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sim. seen ⇓3. (a) This variational problem has a bilinear form which is just the H1 inner product.

Hence it is continuous and coercive with scaling constants equal to 1. From the

Lax-Milgram theorem, the solution exists and is unique. Taking v = u, we have

∥u∥2H2 = ⟨u, f⟩H2 ≤ ∥u∥H2∥f∥H2 ,

from Cauchy-Schwarz, and dividing both sides by ∥u∥L2 gives the result. 5, B

(b) Since V is a Lagrange finite element space of degree k, it contains the function

v = 1. Taking v in the definition gives∫
Ω
udx

on the left hand side, and ∫
Ω
f dx

on the right, hence the result. 5, B

(c) Method 1: solve by computing variational derivative,

δJ [v; δv] = 2

∫
Ω
δv(u− f) +∇δv · ∇(u− f) dx = 0, ∀δv ∈ V,

which is equivalent to our variational problem above.

Method 2: by contradiction. If u is not the minimiser, then there exists v ∈ V with

J [v] ≤ J [u]. Then

J [v] = ∥v − f∥2H1 = ∥(v − u) + (u− f)∥2H1 ,

= ∥v − u)∥2H1 + ⟨v − u, u− f⟩H1︸ ︷︷ ︸
=0 by defn of u

+∥u− f∥H1 ,

= ∥v − u∥2H1 + J [u],

and we conclude that ∥v − u∥2H1 ≤ 0, a contradiction (since norms cannot be

negative and u is assumed not equal to v). 5, C

(d) Since u minimises the functional J , we have

∥u− f∥H1(Ω) = inf
∥v∥H1(Ω)>0

∥v − f∥H1(Ω),

≤ ∥Ihf − f∥H1(Ω),

≤ Chk|f |Hk+1(Ω),

where Ih is the nodal interpolation operator into V , and we used the standard

approximation result for Ih. 5, D
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sim. seen ⇓4. (a) Multiplication by test function and integration by parts in the Laplacian term gives

the following variational problem: find (twice time differentiable) time-dependent

u ∈ H1 such that

⟨ψ, utt⟩+ ⟨∇ψ,∇u⟩ = 0, ∀ψ ∈ H1.

Our C0 finite element space is a subset of H1 so we may propose the following

finite element discretisation, find uh ∈ Vh such that

⟨ψ, uh,tt⟩+ ⟨∇ψ,∇uh⟩ = 0, ∀ψ ∈ Vh.

5, A

(b) Using a basis for Vh of dimension N , we substitute basis expansions for ψ and u,

leading to

N∑
i

ψi

 N∑
j

∫
Ω
ϕiϕj dx

d2

d t2
uj +

N∑
j

∇ϕi · ∇ϕj dxujw

 = 0.

Since the basis coefficients ψi are arbitrary, we must have

N∑
j

∫
Ω
ϕiϕj dx︸ ︷︷ ︸
=Mij

d2

d t2
uj +

N∑
j

∇ϕi · ∇ϕj dx︸ ︷︷ ︸
=Kij

uj = 0, i = 1, . . . , N,

which is equivalent to the required form. 5, C

unseen ⇓
(c) If we introduce v ∈ Vh such that

⟨ϕ, ut⟩ − ⟨ϕ, v⟩ = 0, ∀ϕ ∈ Vh,

(which is Equation (5)) then choosing ϕ = ut − v ∈ Vh gives

0 = ⟨ut − v, ut − v⟩ = ∥ut − v∥2L2 =⇒ ut = v.

Hence, utt = vt, and we can substitute into the variational form to get Equation

(6), and the two formulations are equivalent. 5, C

(d)

Ė = ⟨v, vt⟩+ ⟨∇u,∇ut⟩,
(ut = v) = ⟨v, vt⟩+ ⟨∇u,∇v⟩,

(Equation 6) = −⟨∇v,∇u⟩+ ⟨∇u,∇v⟩ = 0,

as required. 5, D
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5. (a) Taking v = 0, p ̸= 0, we have

c((0, p), (0, p)) = a(0, 0) + b(0, p) + b(0, p) = 0,

by bilinearity (or the definition). Hence we have a pair (v, p) with ∥v∥2V +∥p∥2Q > 0,

but c((v, p), (v, p)) = 0, i.e. c is not coercive. 5, M

(b) (i) We have

∥B∗p∥V ′ = sup
0̸=v∈V

B∗p[v]

∥v∥V
= sup

0̸=v∈V

b(v, p)

∥v∥V
,

and hence

inf
0̸=p∈Q

∥B∗p∥V ′

∥p∥Q
= inf

0 ̸=p∈Q

b(v, p)

∥v∥V ∥p∥Q
,

so the two conditions are equivalent. 5, M

(ii) For any q,
∥B∗q∥V ′

∥q∥Q
≥ inf

0 ̸=p∈Q

∥B∗p∥V ′

∥p∥Q
≥ β,

by the definition of inf, so

∥B∗q∥V ′ ≥ β∥q∥Q,

for any q. Starting from this end, we take q ̸= 0, divide by ∥q∥Q, and inf over

all such q, to recover the original expression. 5, M

(iii) If there exists q1, q2 such that B∗q1 = B∗q2, and then B∗(q1 − q2) = 0 by

linearity. Then Part b(ii) says that

0 = ∥B∗(q1 − q2)∥V ′ ≥ β∥q1 − q2∥Q,

i.e. q1 = q2, so B
∗ is injective. 5, M
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