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seen ⇓1. (a)

(i) The nodal variables N are a basis for the dual space P ′ of P . 3, A

(ii) N determines P if N is indeed a basis for P ′. 3, A

unseen ⇓
(b)

(i) If v = P1 + P̊3 then v = v1 + v̊3 where v1 ∈ P1 and v̊3 ∈ P̊3. On an edge of

K, v̊3 = 0, so v = v1 there, i.e v is linear when restricted to the edge. 1, B

seen/sim.seen ⇓
(ii)

We define lines Π1, Π2, Π3 intersecting z1, z2, z2, z3, and z3, z1 respectively.

We choose nondegenerate linear functionals L1, L2, L3 that vanish on

Π1,Π2,Π3 respectively. Now assume that v ∈ P is such that Ni[v] = 0

for i = 1, 2, 3, 4. v restricted to Π1 vanishes at two points, z1 and z2, so

v = 0 on Π1 by the fundamental theorem of algebra. Thus v = L1q1 for a

quadratic polynomial q1 (since v is cubic). Similarly, v = 0 on Π2. Therefore

q1 vanishes everywhere on Π2 except potentially at z2, but continuity requires

that q1 vanishes there too. Hence, q1 = L2q3, where q3 is linear. Similarly,

v = 0 on Π3, hence q3 = cL3 for c constant. Finally, v vanishes at z∗, but

none of L1, L2, L3 vanish there, so we must have c = 0, i.e. v ≡ 0. 4, B

unseen ⇓
(c) ϕ4 vanishes on Π1,Π2,Π3, so by similar arguments to above, ϕ4 = cL1L2L3. We

need ϕ4(z
∗) = 1, so

ϕ4(x) = L1(x)L2(x)L3(x)/(L1(z
∗)L2(z

∗)L3(z
∗)). 3, C

unseen ⇓
(d) (i) u solves the same variational problem, but with V̊ replaced by H̊1. Taking

v = b in both variational problems and subtracting gives

0 =

∫
Ω
∇(u− uh) · ∇bdx =

∫
K
∇(u− uh) · ∇bdx, (1)

since b is only supported in K. 3, D

(ii) Integration by parts gives

−
∫
K
(u− uh)∇2bdx+

∫
∂K

(u− uh)∇b · n dS = 0. (2)

b is cubic, so ∇2b is constant and nonzero, we can divide by c0 = ∇2b to

obtain the result, with γ(x) = ∇b · n/c0. 3, D
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seen ⇓2. (a)

(i)

IK [u](x) =

n∑
i=1

Ni[u]ϕi(x). (3)

2, A

(ii)

Ni[IK [u]] = Ni[
n∑

j=1

Nj [u]ϕj(x)] =
n∑

j=1

Nj [u]Ni[ϕj(x)]] =
n∑

j=1

Nj [u]δij = Ni[u],

(4)

using linearity of Ni and the definition of the nodal basis. 3, A

(iii) If v ∈ P , then we can write v =
∑

i viϕi. Then,

IK(v) =
∑
i

viIK(ϕi) =
∑
i

vi
∑
j

Nj [ϕi]ϕj =
∑
i

vi
∑
j

δjiϕj =
∑
i

viϕi = v,

(5)

as required. 3, A

seen ⇓
(b)

∥IK(u)∥Hk(K) =

∥∥∥∥∥
n∑

i=1

Ni[u]ϕi(x)

∥∥∥∥∥
Hk(K)

(6)

triangle inequality ≤
∑
i=1

|Ni[u]|∥ϕi∥Hk(K) (7)

definition of C l(K)′ norm ≤
∑
i

∥ϕi∥Hk(K)∥Ni∥Cl(K)′︸ ︷︷ ︸
=C1

∥u∥Cl(K), (8)

as required. 5, B

(c) If k > d/2 + l, then we can use the Sobolev inequality to get

∥IK(u)∥Hk(K) ≤ C1∥u∥Cl(K) ≤ C1C2︸ ︷︷ ︸
=C3

∥u∥Hk(K). (9)

3, C

unseen ⇓
(d) (i) We have l = 0 because Lagrange elements involve function evaluation only.

We have d = 1 because we are solving on an interval. Hence, we need k > 1/2.

On the other hand, we only have u ∈ H2, so we can take k = 1 or k = 2. 1, D

(ii) We have l = 0 for Lagrange, and d = 2, so we need k > 1. This means that

only k = 2 is possible. 1, D

(iii) We have l = 0 for Lagrange, and d = 3, so we need k > 3/2. This means

that only k = 2 is possible. 1, D

(iv) We have l = 1 for Hermite, and d = 2, so we need k > 2. This means that

no values of k are possible. 1, D
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seen ⇓3. (a) (i) A local geometric decomposition for (K,P,N ) is an assignment of each nodal

variable N ∈ N to a geometric entity of K.
4, A

(ii) A local geometric decomposition for (K,P,N ) is C0, if for each geometric

entity w of K, there exists a subset Nw ⊂ N containing only nodal variables

that have been assigned to the closure of w, such that (w,P |w,Nw) is a finite

element, where P |w is the restriction of P to w. 4, A

seen ⇓
(b) We need to show that u ∈ V means that u ∈ C0. To do this we need to check

continuity of u across vertices, edges, and in 3D, faces. If V is constructed using

elements with a C0 geometric decomposition, then we can take any global entity of

the triangulation (i.e., a vertex, edge, face, or cell), and the value of u should agree

on w from any cell that contains w. If (w,P |w,Nw) is a finite element, then since

u in each cell shares those nodal variables, the value of u is completely determined

on w in the same way from all cells. 5, B

unseen ⇓
(c) (i) If we take the function which is zero on each vertex of the square, but equal

to one in the middle, then there is a discontinuity because the function is zero

in the entire bottom right triangle, but one in the middle. 1, C

(ii) The subspace requires that the value in the middle is the average of the values

at the bottom left and top right vertices. Then, the function is linear along

the entire diagonal, which matches the values in the bottom right triangle. 2, C

unseen ⇓
(d) Denote the diagonal edge as Γ. A consistent modification is to add a term

−
∫
Γ
n+ · ∇u+h v

+
h + n− · ∇u−h v

−
h dS (10)

to the left hand side, where + and − indicate the values above and below Γ

respectively. This is consistent since if we replace uh with the exact solution u, we

can separately integrate by parts in the regions above and below Γ, to obtain∫
Ω
(u−∇2u− f)v dx = 0, (11)

as required. The modification vanishes according to property 2 because it only

involves values of uh on that boundary. 4, D
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seen ⇓4. (a) (i) a is coercive if there exists a constant γ > 0 such that

a(u, u) ≥ γ∥u∥2H1 , ∀u ∈ H1. (12)

2, A

(ii) a is continuous if there exists a constant C > 0 such that

a(u, v) ≤ C∥u∥H1∥v∥H1 , ∀u, v ∈ H1. (13)

2, A

(iii) F is continuous if there exists a constant C > 0 such that

F [v] ≤ C∥v∥H1 , ∀v ∈ H1. (14)

2, A

(iv) The Galerkin approximation seeks uh ∈ V such that

a(uh, v) = F [v], ∀v ∈ V. (15)

4, A

seen ⇓
(b) (i) We take v ∈ V in the H1 variational problem (possible since V ⊂ H1, and

substract the Galerkin approximation with the same v, using linearity,

a(u− uh, v) = a(u, v)− a(uh, v) = F [v]− F [v] = 0, (16)

as required. 3, B

seen ⇓
(ii) The error is u− uh. This tells us that the error is orthogonal to the whole of

V , when using a(·, ·) as an inner product.

3, B

seen ⇓

(c) For arbitrary v ∈ V ,

γ∥u− uh∥2H1(Ω) ≤ a(u− uh, u− uh) (17)

= a(u− uh, u− v) + a(u− uh, v − uh)︸ ︷︷ ︸
=0

(18)

≤ C∥u− uh∥H1(Ω)∥u− v∥H1(Ω), (19)

and the result is obtained by dividing by ∥u−uh∥H1(Ω) and sup-ing over all v ∈ V .

4, C
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seen/sim.seen ⇓5. (a) We first note that if u solves the weak form equation, then taking q = ∇·u, v = 0

gives ∥∇ ·u∥L2 = 0, i,e. ∇·u = 0 in L2. If u ∈ H2 and p ∈ H1, we may integrate

by parts to get∫
Ω
(−µ∇2u− µ∇ (∇ · u)︸ ︷︷ ︸

=0

+∇p− f)v dx, ∀v ∈ V, (20)

having dropped the boundary integral because v vanishes there. Then, we may

choose as v a sequence of C∞
0 functions converging to −µ∇2u + ∇p − f , and

hence conclude that −µ∇2u+∇p = f in L2. 8, M

seen ⇓
(b) If we take u = 0, then

c((u, p), (u, p)) = 0, (21)

so c is not coercive. 3, M

unseen ⇓
(c) We have

∥B∗
hq∥V ′

h
= sup

0̸=v∈Vh

b(v, q)

∥v∥V
, (22)

so the inf sup condition is equivalent to

inf
0̸=q∈Qh

∥B∗hq∥V ′
h
≥ γ > 0. (23)

If B∗
h has a kernel, then we can take q in the kernel and get zero, violating the inf

sup condition. 4, M

unseen ⇓
(d) We consider a function q ∈ Qh that is only supported in one square (subdivided

into triangles). Inside the square, q is either -1 or 1, with the value alternating

upon crossing the diagonal lines between triangles. We claim that b(u, q) = 0

for all u ∈ Vh. To check this, we just need to check it for each basis function

supported in the square. The basis function equal to 1 at the square centre has

constant divergence, so the q values cancel out and b(u, q) = 0. A basis function

equal to 1 at a corner of the square also has constant divergence inside its support,

and the same thing happens. Therefore, q ∈ kerB∗
h. In fact there is one kernel

function for each square. 5, M
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Review of mark distribution:

Total A marks: 32 of 32 marks

Total B marks: 21 of 20 marks

Total C marks: 13 of 12 marks

Total D marks: 14 of 16 marks

Total marks: 100 of 80 marks

Total Mastery marks: 20 of 20 marks
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