BSc and MSci EXAMINATIONS (MATHEMATICS)

May 2023

This paper is also taken for the relevant examination for the Associateship.

M70022

Finite Elements (Solutions)

1. (a)

(i) The nodal variables \mathcal{N} are a basis for the dual space P^{\prime} of P.
(ii) \mathcal{N} determines P if \mathcal{N} is indeed a basis for P^{\prime}.
(b)
(i) If $v=P_{1}+\stackrel{\circ}{P}_{3}$ then $v=v_{1}+\stackrel{\circ}{v}_{3}$ where $v_{1} \in P_{1}$ and $\dot{\circ}_{3} \in \stackrel{\circ}{P}_{3}$. On an edge of $K, \stackrel{\circ}{v}_{3}=0$, so $v=v_{1}$ there, i.e v is linear when restricted to the edge.
(ii)

We define lines $\Pi_{1}, \Pi_{2}, \Pi_{3}$ intersecting $z_{1}, z_{2}, z_{2}, z_{3}$, and z_{3}, z_{1} respectively. We choose nondegenerate linear functionals L_{1}, L_{2}, L_{3} that vanish on $\Pi_{1}, \Pi_{2}, \Pi_{3}$ respectively. Now assume that $v \in P$ is such that $N_{i}[v]=0$ for $i=1,2,3,4 . v$ restricted to Π_{1} vanishes at two points, z_{1} and z_{2}, so $v=0$ on Π_{1} by the fundamental theorem of algebra. Thus $v=L_{1} q_{1}$ for a quadratic polynomial q_{1} (since v is cubic). Similarly, $v=0$ on Π_{2}. Therefore q_{1} vanishes everywhere on Π_{2} except potentially at z_{2}, but continuity requires that q_{1} vanishes there too. Hence, $q_{1}=L_{2} q_{3}$, where q_{3} is linear. Similarly, $v=0$ on Π_{3}, hence $q_{3}=c L_{3}$ for c constant. Finally, v vanishes at z^{*}, but none of L_{1}, L_{2}, L_{3} vanish there, so we must have $c=0$, i.e. $v \equiv 0$.
(c) ϕ_{4} vanishes on $\Pi_{1}, \Pi_{2}, \Pi_{3}$, so by similar arguments to above, $\phi_{4}=c L_{1} L_{2} L_{3}$. We need $\phi_{4}\left(z^{*}\right)=1$, so

$$
\phi_{4}(x)=L_{1}(x) L_{2}(x) L_{3}(x) /\left(L_{1}\left(z^{*}\right) L_{2}\left(z^{*}\right) L_{3}\left(z^{*}\right)\right)
$$

(d) (i) u solves the same variational problem, but with $\stackrel{\circ}{V}$ replaced by $\stackrel{\circ}{H}^{1}$. Taking $v=b$ in both variational problems and subtracting gives

$$
\begin{equation*}
0=\int_{\Omega} \nabla\left(u-u_{h}\right) \cdot \nabla b \mathrm{~d} x=\int_{K} \nabla\left(u-u_{h}\right) \cdot \nabla b \mathrm{~d} x \tag{1}
\end{equation*}
$$

since b is only supported in K.
(ii) Integration by parts gives

$$
\begin{equation*}
-\int_{K}\left(u-u_{h}\right) \nabla^{2} b \mathrm{~d} x+\int_{\partial K}\left(u-u_{h}\right) \nabla b \cdot n \mathrm{~d} S=0 . \tag{2}
\end{equation*}
$$

b is cubic, so $\nabla^{2} b$ is constant and nonzero, we can divide by $c_{0}=\nabla^{2} b$ to obtain the result, with $\gamma(x)=\nabla b \cdot n / c_{0}$.
unseen \Downarrow
3, C
unseen \Downarrow
$3, \mathrm{D}$

1, B
seen/sim.seen \Downarrow

2. (a)
(i)

$$
\begin{equation*}
I_{K}[u](x)=\sum_{i=1}^{n} N_{i}[u] \phi_{i}(x) . \tag{3}
\end{equation*}
$$

(ii)

$$
\begin{equation*}
\left.N_{i}\left[I_{K}[u]\right]=N_{i}\left[\sum_{j=1}^{n} N_{j}[u] \phi_{j}(x)\right]=\sum_{j=1}^{n} N_{j}[u] N_{i}\left[\phi_{j}(x)\right]\right]=\sum_{j=1}^{n} N_{j}[u] \delta_{i j}=N_{i}[u], \tag{4}
\end{equation*}
$$

using linearity of N_{i} and the definition of the nodal basis.
(iii) If $v \in P$, then we can write $v=\sum_{i} v_{i} \phi_{i}$. Then,

$$
\begin{equation*}
I_{K}(v)=\sum_{i} v_{i} I_{K}\left(\phi_{i}\right)=\sum_{i} v_{i} \sum_{j} N_{j}\left[\phi_{i}\right] \phi_{j}=\sum_{i} v_{i} \sum_{j} \delta_{j i} \phi_{j}=\sum_{i} v_{i} \phi_{i}=v, \tag{5}
\end{equation*}
$$

as required.
(b)

$$
\begin{align*}
\left\|I_{K}(u)\right\|_{H^{k}(K)} & =\left\|\sum_{i=1}^{n} N_{i}[u] \phi_{i}(x)\right\|_{H^{k}(K)} \tag{6}\\
\text { triangle inequality } & \leq \sum_{i=1}\left|N_{i}[u]\right|\left\|\phi_{i}\right\|_{H^{k}(K)} \tag{7}\\
\text { definition of } C^{l}(K)^{\prime} \text { norm } & \leq \underbrace{\sum_{i}\left\|\phi_{i}\right\|_{H^{k}(K)}\left\|N_{i}\right\|_{C^{l}(K)^{\prime}}}_{=C_{1}}\|u\|_{C^{l}(K)}, \tag{8}
\end{align*}
$$

seen \Downarrow
as required.
(c) If $k>d / 2+l$, then we can use the Sobolev inequality to get

$$
\begin{equation*}
\left\|I_{K}(u)\right\|_{H^{k}(K)} \leq C_{1}\|u\|_{C^{l}(K)} \leq \underbrace{C_{1} C_{2}}_{=C_{3}}\|u\|_{H^{k}(K)} \tag{9}
\end{equation*}
$$

(d) (i) We have $l=0$ because Lagrange elements involve function evaluation only.

3, C

We have $d=1$ because we are solving on an interval. Hence, we need $k>1 / 2$. On the other hand, we only have $u \in H^{2}$, so we can take $k=1$ or $k=2$.
(ii) We have $l=0$ for Lagrange, and $d=2$, so we need $k>1$. This means that only $k=2$ is possible.
unseen \Downarrow
1, D

1, D
(iii) We have $l=0$ for Lagrange, and $d=3$, so we need $k>3 / 2$. This means that only $k=2$ is possible.
$1, \mathrm{D}$
(iv) We have $l=1$ for Hermite, and $d=2$, so we need $k>2$. This means that no values of k are possible.
3. (a) (i) A local geometric decomposition for (K, P, \mathcal{N}) is an assignment of each nodal variable $N \in \mathcal{N}$ to a geometric entity of K.
(ii) A local geometric decomposition for (K, P, \mathcal{N}) is C^{0}, if for each geometric entity w of K, there exists a subset $\mathcal{N}_{w} \subset \mathcal{N}$ containing only nodal variables that have been assigned to the closure of w, such that $\left(w,\left.P\right|_{w}, \mathcal{N}_{w}\right)$ is a finite element, where $\left.P\right|_{w}$ is the restriction of P to w.
(b) We need to show that $u \in V$ means that $u \in C^{0}$. To do this we need to check continuity of u across vertices, edges, and in 3D, faces. If V is constructed using elements with a C^{0} geometric decomposition, then we can take any global entity of the triangulation (i.e., a vertex, edge, face, or cell), and the value of u should agree on w from any cell that contains w. If $\left(w,\left.P\right|_{w}, \mathcal{N}_{w}\right)$ is a finite element, then since u in each cell shares those nodal variables, the value of u is completely determined on w in the same way from all cells.
(c) (i) If we take the function which is zero on each vertex of the square, but equal to one in the middle, then there is a discontinuity because the function is zero in the entire bottom right triangle, but one in the middle.
(ii) The subspace requires that the value in the middle is the average of the values at the bottom left and top right vertices. Then, the function is linear along the entire diagonal, which matches the values in the bottom right triangle.
(d) Denote the diagonal edge as Γ. A consistent modification is to add a term

$$
\begin{equation*}
-\int_{\Gamma} n^{+} \cdot \nabla u_{h}^{+} v_{h}^{+}+n^{-} \cdot \nabla u_{h}^{-} v_{h}^{-} \mathrm{d} S \tag{10}
\end{equation*}
$$

to the left hand side, where + and - indicate the values above and below Γ respectively. This is consistent since if we replace u_{h} with the exact solution u, we can separately integrate by parts in the regions above and below Γ, to obtain

$$
\begin{equation*}
\int_{\Omega}\left(u-\nabla^{2} u-f\right) v \mathrm{~d} x=0 \tag{11}
\end{equation*}
$$

as required. The modification vanishes according to property 2 because it only involves values of u_{h} on that boundary.
seen \Downarrow
4, A

4, A
seen \Downarrow

5, B
unseen \Downarrow
1, C
unseen \Downarrow

4, D
4. (a) (i) a is coercive if there exists a constant $\gamma>0$ such that

$$
\begin{equation*}
a(u, u) \geq \gamma\|u\|_{H^{1}}^{2}, \quad \forall u \in H^{1} . \tag{12}
\end{equation*}
$$

(ii) a is continuous if there exists a constant $C>0$ such that

$$
\begin{equation*}
a(u, v) \leq C\|u\|_{H^{1}}\|v\|_{H^{1}}, \quad \forall u, v \in H^{1} . \tag{13}
\end{equation*}
$$

(iii) F is continuous if there exists a constant $C>0$ such that

$$
\begin{equation*}
F[v] \leq C\|v\|_{H^{1}}, \quad \forall v \in H^{1} . \tag{14}
\end{equation*}
$$

(iv) The Galerkin approximation seeks $u_{h} \in V$ such that

$$
\begin{equation*}
a\left(u_{h}, v\right)=F[v], \quad \forall v \in V . \tag{15}
\end{equation*}
$$

(b) (i) We take $v \in V$ in the H^{1} variational problem (possible since $V \subset H^{1}$, and substract the Galerkin approximation with the same v, using linearity,

$$
\begin{equation*}
a\left(u-u_{h}, v\right)=a(u, v)-a\left(u_{h}, v\right)=F[v]-F[v]=0, \tag{16}
\end{equation*}
$$

(ii) The error is $u-u_{h}$. This tells us that the error is orthogonal to the whole of V, when using $a(\cdot, \cdot)$ as an inner product.
(c) For arbitrary $v \in V$,

$$
\begin{align*}
\gamma\left\|u-u_{h}\right\|_{H^{1}(\Omega)}^{2} & \leq a\left(u-u_{h}, u-u_{h}\right) \tag{17}\\
& =a\left(u-u_{h}, u-v\right)+\underbrace{a\left(u-u_{h}, v-u_{h}\right)}_{=0} \tag{18}\\
& \leq C\left\|u-u_{h}\right\|_{H^{1}(\Omega)}\|u-v\|_{H^{1}(\Omega)}, \tag{19}
\end{align*}
$$

and the result is obtained by dividing by $\left\|u-u_{h}\right\|_{H^{1}(\Omega)}$ and sup-ing over all $v \in V$.
5. (a) We first note that if u solves the weak form equation, then taking $q=\nabla \cdot u, v=0$ gives $\|\nabla \cdot u\|_{L^{2}}=0$, i,e. $\nabla \cdot u=0$ in L^{2}. If $u \in H^{2}$ and $p \in H^{1}$, we may integrate by parts to get

$$
\begin{equation*}
\int_{\Omega}(-\mu \nabla^{2} u-\mu \nabla \underbrace{(\nabla \cdot u)}_{=0}+\nabla p-f) v \mathrm{~d} x, \quad \forall v \in V \tag{20}
\end{equation*}
$$

having dropped the boundary integral because v vanishes there. Then, we may choose as v a sequence of C_{0}^{∞} functions converging to $-\mu \nabla^{2} u+\nabla p-f$, and hence conclude that $-\mu \nabla^{2} u+\nabla p=f$ in L^{2}.
(b) If we take $u=0$, then

$$
\begin{equation*}
c((u, p),(u, p))=0, \tag{21}
\end{equation*}
$$

so c is not coercive.
(c) We have

$$
\begin{equation*}
\left\|B_{h}^{*} q\right\|_{V_{h}^{\prime}}=\sup _{0 \neq v \in V_{h}} \frac{b(v, q)}{\|v\|_{V}} \tag{22}
\end{equation*}
$$

so the inf sup condition is equivalent to

$$
\begin{equation*}
\inf _{0 \neq q \in Q_{h}}\left\|B^{*} h q\right\|_{V_{h}^{\prime}} \geq \gamma>0 . \tag{23}
\end{equation*}
$$

If B_{h}^{*} has a kernel, then we can take q in the kernel and get zero, violating the inf sup condition.
(d) We consider a function $q \in Q_{h}$ that is only supported in one square (subdivided into triangles). Inside the square, q is either -1 or 1 , with the value alternating upon crossing the diagonal lines between triangles. We claim that $b(u, q)=0$ for all $u \in V_{h}$. To check this, we just need to check it for each basis function supported in the square. The basis function equal to 1 at the square centre has constant divergence, so the q values cancel out and $b(u, q)=0$. A basis function equal to 1 at a corner of the square also has constant divergence inside its support, and the same thing happens. Therefore, $q \in \operatorname{ker} B_{h}^{*}$. In fact there is one kernel function for each square.

seen \Downarrow
3, M
unseen \Downarrow

4, M
unseen \Downarrow

5, M

Review of mark distribution:

Total A marks: 32 of 32 marks
Total B marks: 21 of 20 marks
Total C marks: 13 of 12 marks
Total D marks: 14 of 16 marks
Total marks: 100 of 80 marks
Total Mastery marks: 20 of 20 marks

