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1. What is the choice of the geometric decomposition (allocation of nodal variables to cell and vertex
entities) that leads to the maximum possible global continuity of finite element spaces defined on
the interval [0, L] constructed from the following one-dimensional elements (K,P,N). Justify your
answer.

(a) K = [a, b], P is linear polynomials, N = (N1, N2) where N1[u] = u((a + b)/2),
N2[u] = u′((a+ b)/2). Solution: SIMILAR
Since the local space is 2-dimensional, a C0 geometric decomposition would require one
nodal variable allocated to each of the two vertices. We have u(a) = N1[u]− (a− b)N2[u]/2,
and u(b) = N1[u] + (a − b)N2[u]/2. This means that both nodal variables are required
to determine u at each end of the interval. This means it is not possible to allocate one
nodal variable to each vertex such that the function value can only be determined from nodal
variables associated with that vertex.

[6 marks]

(b) K = [a, b], P is quadratic polynomials, N = (N1, N2, N3) whereN1[u] = u(a), N2[u] = u(b),
N3[u] =

∫ b
a u dx. Solution: SIMILAR

A C1 geometric decomposition would require at least two nodal variables allocated to each
vertex, so that both the function and the derivative can be determined, but the local space
is 3 dimensional which does not give enough nodal variables. Hence the global space is at
most C0. A C0 decomposition allocates N1 to the vertex a, N2 to the vertex b, and N3 to
the cell. Clearly u(a) can be determined from N1 and u(b) from N2 as required.

[6 marks]

(c) K = [a, b], P is quadratic polynomials, N = (N1, N2, N3) where N1[u] = u′(a), N2[u] =
u′(b),N3[u] = u((a+ b)/2). Solution: SIMILAR
The space must be at most C0 by the arguments in the previous part. We have u(a) =
N3[u] + (a − b)(N1[u] + N2[u])/4, u(b) = N3[u] − (a − b)(N1[u] + N2[u])/4, which means
that all three variables are required to determine the function values at each vertex. By a
similar argument to the first part, this means that a C0 geometric decomposition is impossible.

[7 marks]
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2. (a) Consider the finite element (K,P ,N ), with
∗ K is a non-degenerate triangle,
∗ P is the space of polynomials on K of degree ≤ 1.
∗ N = (N1, N2, N3), where

Ni(u) =
∫

fi

u dx,

where (f1, f2, f3) are the edges of K, with f1 joining vertices 1 and 2, f2 joining vertices
2 and 3, and f3 joining vertices 3 and 1.

Show that N determines P .
[10 marks]

Solution: SIMILAR
It suffices to show that if u ∈ P , then Ni(u) = 0 for all i =⇒ u = 0.
So, we assume that u ∈ P with Ni(u) = 0, looking to show that u = 0. Ni(u) = 0 means
that the average of u over the edge fi is zero. Since u is linear on fi, this means that u
vanishes at the midpoint of each edge. These edges can be joined by three lines L1, L2, L3,
and we iteratively conclude that u vanishes on L1 and L2, so that u = cL1(x)L2(x), and u
vanishing on the third vertex not intersected by L1 means that c = 0 (following the usual
argument for linear Lagrange elements on triangles), and hence u = 0 everywhere.

(b) Now consider the finite element (K,P ,N ), with
∗ K is a non-degenerate triangle,
∗ P is the space of polynomials on K of degree ≤ 2.
∗ N = (N1,1, N1,2, N2,1, N2,2, N3,1, N3,2), where

Ni,j(u) =
∫

fi

φi,ju dx,

where the edge test functions φi,j define a basis for linear functions restricted to fi such
that φi,1 = 1 on vertex 1 and 0 on vertex 2, φi,2 = 1 on vertex 2 and 0 on vertex 1, etc.

Show that N does not determine P .
[10 marks]

Solution: UNSEEN
We show by counter example. We take the quadratic q function that is equal to 1/6 on
each vertex, and −1/12 at each edge midpoint (this defines a unique quadratic function
since these are the nodal variables for the standard Lagrange quadratic element, which is
unisolvent). Consider one of the edges fi, and choose a coordinate s which is equal to 0 on
one end of the edge, and 1 on the other end. On that edge, q|fi

(s) = s2 − s + 1/6. This
function has mean zero, and is symmetric, which means that∫

fi

φ(s)q|fi
(s) d s = 0

for any linear function φ(s), and hence Ni,j(u) = 0, j = 1, 2. This means that all the nodal
variables vanish when applied to u, but u is not zero. Hence, N does not determine P .
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3. (a) Let b be a continuous, coercive bilinear form on V , and F be a continuous linear form on V .
Let u ∈ V solve the linear variational problem

b(u, v) = F (v) ∀v ∈ V.

Let Vh be a finite dimensional subspace of V , and let uh ∈ V solve the Galerkin approximation

b(uh, v) = F (v) ∀v ∈ Vh.

Show that
b(u− uh, v) = 0, ∀v ∈ Vh.

[4 marks]

Solution: BOOKWORK
Since Vh ⊂ V , we can take v ∈ Vh in the variational problem for u, to get

b(u, v) = F (v) ∀v ∈ Vh.

Then, subtracting the Galerkin approximation, we have

b(u, v)− b(uh, v) = 0 ∀v ∈ Vh.

Finally, from bilinearity, we have

b(u− uh, v) = 0 ∀v ∈ Vh.

(b) Hence, show that
‖u− uh‖V ≤

M

γ
min
v∈Vh

‖u− v‖V ,

where γ and M are the coercivity and continuity constants for b respectively.

[4 marks]

Solution: BOOKWORK

γ‖u− uh‖2
V ≤ b(u− uh, u− uh), [coercivity]

= b(u− uh, u− v + v − uh) for any v ∈ Vh,

= b(u− uh, u− v) + b(u− uh, v − uh)︸ ︷︷ ︸
=0[by previous part]

, [bilinearity]

≤M‖u− uh‖V ‖u− v‖V . [continuity]

Dividing both sides by γ‖u− uh‖V gives

‖u− uh‖V ≤
M

γ
‖u− v‖V .

Since the left-hand side is independent of the choice of v, we can minimise over v ∈ Vh to
get the result.
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(c) Consider the variational problem of finding u ∈ H1([0, 1]) such that∫ 1

0
vu+ v′u′ dx =

∫ 1

0
vx dx+ v(1)− v(0), ∀v ∈ H1([0, 1]).

After dividing the interval [0, 1] into N equispaced cells and forming a P1 C0 finite element
space VN , the error ‖u− uh‖H1 = 0 for any N > 0.
Explain why this is expected.

[6 marks]

Solution: SIMILAR
The problem has the solution u(x) = x. Hence, u ∈ VN for anyN , and minv ‖v−u‖H1([0,1]) =
0, hence ‖u− uh‖H1([0,1]) = 0 from the previous result.

(d) Let H̊1([0, 1]) be the subspace of H1([0, 1]) such that u(0) = 0. Consider the variational
problem of finding u ∈ H̊1([0, 1]) with

∫ 1

0
v′u′ dx =

∫ 1/2

0
v dx, ∀v ∈ H̊([0, 1]).

The interval [0, 1] is divided into 3N equispaced cells (where N is a positive integer). After
forming a P1 C0 finite element space VN , the error ‖u− uh‖H1 is found not to converge to
zero. Explain why this is expected?

[6 marks]

Solution: UNSEEN
The solution is

u(x) =


x−x2

2 x < 1/2,
1
8 otherwise.

This solution is not in H2, and so the usual interpolation estimate is not expected.
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4. The inhomogeneous Helmholtz equation in two dimensions is given by

α(x)u−∇2u = f,
∂u

∂n
= 0 on ∂Ω, (1)

where ∂Ω is the boundary of the problem domain Ω, and α(x) is a C∞(Ω) function with bounds
1 ≤ α(x) ≤ 2 for all z ∈ Ω.

(a) Write down a variational formulation for this problem, in the form

a(u, v) = F (v), ∀v ∈ H1(Ω),

and show that if u solves the variational formulation, and u ∈ H2(Ω) then u solves (1) in an
appropriate sense.

[6 marks]

Solution: BOOKWORK
We take

a(u, v) =
∫

Ω
αuv +∇u · ∇v dx, F (v) =

∫
Ω
vf dx.

Taking v ∈ C∞0 (Ω), we have enough regularity for integration by parts, and∫
Ω
v(αu−∇2u− f) dx = 0.

Picking a sequence of vs that converge to αu − ∇2u − f , and passing to the limit gives
‖αu −∇2u − f‖L2(Ω), i.e. αu −∇2u = f in L2(Ω). Returning to the variational form and
using this fact gives

0 =
∫

Ω
αuv +∇u · ∇v − vf dx,

=
∫

Ω
αuv +∇u · ∇v − v(αu−∇2u) dx,

=
∫

∂Ω

∂u

∂n
v dS, ∀v ∈ H1(Ω),

after using integration by parts. We may choose v = ∂u
∂n

from the trace theorem, and hence
‖∂u

∂n
‖L2(Ω) = 0 i.e. ∂u

∂n
= 0 in L2(Ω).

(b) Show that a(·, ·) is continuous and coercive.

[6 marks]

Solution: SIMILAR

|a(u, v)| = |
∫

Ω
αuv+∇u·∇v dx| ≤ 2|

∫
Ω
uv+∇u·∇v dx| = 2|(u, v)|H1(Ω) ≤ ‖u‖H1(Ω)‖v‖H1(Ω),

by the Schwartz inequality. Hence a is continuous with continuity constant 2.

a(u, u) =
∫

Ω
αu2 + |∇u|2 dx ≥

∫
Ω
u2 + |∇u|2 dx = ‖u‖2

H1(Ω),

hence a is coercive with coercivity constant 1.
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(c) Hence, show that the linear Lagrange finite element approximation satisfies

‖u− uh‖H1(Ω) ≤ Ch‖u‖H2(Ω).

for C > 0, independent of u. (You may make use of the approximation theory estimate

‖u− Ihu‖H1(Ω) ≤ Ĉh‖u‖H2(Ω).

for Ĉ > 0, independent of u, where Ih is the nodal interpolation operator Ih : H2(Ω)→ Vh,
where Vh is the finite element space with mesh parameter h, and any other results from
lectures.)

[8 marks]

Solution: UNSEEN
From Cèa’s Lemma (also proven in Q3) we have

‖u− uh‖H1(Ω) ≤
M = 2
γ = 1 min

v∈Vh

‖v − u‖H1(Ω) ≤ 2‖Ihu− u‖H1(Ω) ≤ 2Ĉh‖u‖H2(Ω).
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