Source code for fe_utils.solvers.helmholtz
"""Solve a model helmholtz problem using the finite element method.
If run as a script, the result is plotted. This file can also be
imported as a module and convergence tests run on the solver.
"""
from fe_utils import *
import numpy as np
from numpy import cos, pi
import scipy.sparse as sp
import scipy.sparse.linalg as splinalg
from argparse import ArgumentParser
[docs]
def assemble(fs, f):
"""Assemble the finite element system for the Helmholtz problem given
the function space in which to solve and the right hand side
function."""
raise NotImplementedError
# Create an appropriate (complete) quadrature rule.
# Tabulate the basis functions and their gradients at the quadrature points.
# Create the left hand side matrix and right hand side vector.
# This creates a sparse matrix because creating a dense one may
# well run your machine out of memory!
A = sp.lil_matrix((fs.node_count, fs.node_count))
l = np.zeros(fs.node_count)
# Now loop over all the cells and assemble A and l
return A, l
[docs]
def solve_helmholtz(degree, resolution, analytic=False, return_error=False):
"""Solve a model Helmholtz problem on a unit square mesh with
``resolution`` elements in each direction, using equispaced
Lagrange elements of degree ``degree``."""
# Set up the mesh, finite element and function space required.
mesh = UnitSquareMesh(resolution, resolution)
fe = LagrangeElement(mesh.cell, degree)
fs = FunctionSpace(mesh, fe)
# Create a function to hold the analytic solution for comparison purposes.
analytic_answer = Function(fs)
analytic_answer.interpolate(
lambda x: cos(4 * pi * x[0]) * x[1] ** 2 * (1.0 - x[1]) ** 2
)
# If the analytic answer has been requested then bail out now.
if analytic:
return analytic_answer, 0.0
# Create the right hand side function and populate it with the
# correct values.
f = Function(fs)
f.interpolate(
lambda x: (
(16 * pi**2 + 1) * (x[1] - 1) ** 2 * x[1] ** 2
- 12 * x[1] ** 2
+ 12 * x[1]
- 2
)
* cos(4 * pi * x[0])
)
# Assemble the finite element system.
A, l = assemble(fs, f)
# Create the function to hold the solution.
u = Function(fs)
# Cast the matrix to a sparse format and use a sparse solver for
# the linear system. This is vastly faster than the dense
# alternative.
A = sp.csr_matrix(A)
u.values[:] = splinalg.spsolve(A, l)
# Compute the L^2 error in the solution for testing purposes.
error = errornorm(analytic_answer, u)
if return_error:
u.values -= analytic_answer.values
# Return the solution and the error in the solution.
return u, error
if __name__ == "__main__":
parser = ArgumentParser(
description="""Solve a Helmholtz problem on the unit square."""
)
parser.add_argument(
"--analytic",
action="store_true",
help="Plot the analytic solution instead of solving the finite element problem.",
)
parser.add_argument(
"--error", action="store_true", help="Plot the error instead of the solution."
)
parser.add_argument(
"resolution",
type=int,
nargs=1,
help="The number of cells in each direction on the mesh.",
)
parser.add_argument(
"degree",
type=int,
nargs=1,
help="The degree of the polynomial basis for the function space.",
)
args = parser.parse_args()
resolution = args.resolution[0]
degree = args.degree[0]
analytic = args.analytic
plot_error = args.error
u, error = solve_helmholtz(degree, resolution, analytic, plot_error)
u.plot()