import numpy as np
from . import ReferenceTriangle, ReferenceInterval
from .finite_elements import LagrangeElement, lagrange_points
from matplotlib import pyplot as plt
from matplotlib.tri import Triangulation
[docs]
class FunctionSpace(object):
def __init__(self, mesh, element):
"""A finite element space.
:param mesh: The :class:`~.mesh.Mesh` on which this space is built.
:param element: The :class:`~.finite_elements.FiniteElement` of this
space.
Most of the implementation of this class is left as an :ref:`exercise
<ex-function-space>`.
"""
#: The :class:`~.mesh.Mesh` on which this space is built.
self.mesh = mesh
#: The :class:`~.finite_elements.FiniteElement` of this space.
self.element = element
raise NotImplementedError
# Implement global numbering in order to produce the global
# cell node list for this space.
#: The global cell node list. This is a two-dimensional array in
#: which each row lists the global nodes incident to the corresponding
#: cell. The implementation of this member is left as an
#: :ref:`exercise <ex-function-space>`
self.cell_nodes = None
#: The total number of nodes in the function space.
self.node_count = np.dot(element.nodes_per_entity, mesh.entity_counts)
def __repr__(self):
return "%s(%s, %s)" % (self.__class__.__name__, self.mesh, self.element)
[docs]
class Function(object):
def __init__(self, function_space, name=None):
"""A function in a finite element space. The main role of this object
is to store the basis function coefficients associated with the nodes
of the underlying function space.
:param function_space: The :class:`FunctionSpace` in which
this :class:`Function` lives.
:param name: An optional label for this :class:`Function`
which will be used in output and is useful for debugging.
"""
#: The :class:`FunctionSpace` in which this :class:`Function` lives.
self.function_space = function_space
#: The (optional) name of this :class:`Function`
self.name = name
#: The basis function coefficient values for this :class:`Function`
self.values = np.zeros(function_space.node_count)
[docs]
def interpolate(self, fn):
"""Interpolate a given Python function onto this finite element
:class:`Function`.
:param fn: A function ``fn(X)`` which takes a coordinate
vector and returns a scalar value.
"""
fs = self.function_space
# Create a map from the vertices to the element nodes on the
# reference cell.
cg1 = LagrangeElement(fs.element.cell, 1)
coord_map = cg1.tabulate(fs.element.nodes)
cg1fs = FunctionSpace(fs.mesh, cg1)
for c in range(fs.mesh.entity_counts[-1]):
# Interpolate the coordinates to the cell nodes.
vertex_coords = fs.mesh.vertex_coords[cg1fs.cell_nodes[c, :], :]
node_coords = np.dot(coord_map, vertex_coords)
self.values[fs.cell_nodes[c, :]] = [fn(x) for x in node_coords]
[docs]
def plot(self, subdivisions=None):
"""Plot the value of this :class:`Function`. This is quite a low
performance plotting routine so it will perform poorly on
larger meshes, but it has the advantage of supporting higher
order function spaces than many widely available libraries.
:param subdivisions: The number of points in each direction to
use in representing each element. The default is
:math:`2d+1` where :math:`d` is the degree of the
:class:`FunctionSpace`. Higher values produce prettier plots
which render more slowly!
"""
fs = self.function_space
d = subdivisions or (
2 * (fs.element.degree + 1) if fs.element.degree > 1 else 2
)
if fs.element.cell is ReferenceInterval:
fig = plt.figure()
fig.add_subplot(111)
# Interpolation rule for element values.
local_coords = lagrange_points(fs.element.cell, d)
elif fs.element.cell is ReferenceTriangle:
fig = plt.figure()
ax = fig.add_subplot(projection="3d")
local_coords, triangles = self._lagrange_triangles(d)
else:
raise ValueError("Unknown reference cell: %s" % fs.element.cell)
function_map = fs.element.tabulate(local_coords)
# Interpolation rule for coordinates.
cg1 = LagrangeElement(fs.element.cell, 1)
coord_map = cg1.tabulate(local_coords)
cg1fs = FunctionSpace(fs.mesh, cg1)
for c in range(fs.mesh.entity_counts[-1]):
vertex_coords = fs.mesh.vertex_coords[cg1fs.cell_nodes[c, :], :]
x = np.dot(coord_map, vertex_coords)
local_function_coefs = self.values[fs.cell_nodes[c, :]]
v = np.dot(function_map, local_function_coefs)
if fs.element.cell is ReferenceInterval:
plt.plot(x[:, 0], v, "k")
else:
ax.plot_trisurf(
Triangulation(x[:, 0], x[:, 1], triangles), v, linewidth=0
)
plt.show()
@staticmethod
def _lagrange_triangles(degree):
# Triangles linking the Lagrange points.
return (
np.array(
[
[i / degree, j / degree]
for j in range(degree + 1)
for i in range(degree + 1 - j)
]
),
np.array(
# Up triangles
[
np.add(
np.sum(range(degree + 2 - j, degree + 2)),
(i, i + 1, i + degree + 1 - j),
)
for j in range(degree)
for i in range(degree - j)
]
# Down triangles.
+ [
np.add(
np.sum(range(degree + 2 - j, degree + 2)),
(i + 1, i + degree + 1 - j + 1, i + degree + 1 - j),
)
for j in range(degree - 1)
for i in range(degree - 1 - j)
]
),
)
[docs]
def integrate(self):
"""Integrate this :class:`Function` over the domain.
:result: The integral (a scalar)."""
raise NotImplementedError